Что такое «машина Тьюринга»?

Что такое "машина Тьюринга"?

  1. Без понятия

  2. гг. . классная вопрос. . помню наз заставляли проги для нее писать... гг.. .
    Машина Тьюринга - математическое построение, предназначенное для уточнения понятия алгоритма.

    Машина Тьюринга состоит:
    - из неограниченной в обе стороны ленты, разделенной на ячейки;
    - из головка чтения/записи, которая может перемещаться вдоль ленты.

    Программа для машины Тьюринга, задается в виде таблицы, определяющей команды для головки.

  3. Машина Тьюринга - математическое построение, предназначенное для уточнения понятия алгоритма.

    Машина Тьюринга состоит:
    - из неограниченной в обе стороны ленты, разделенной на ячейки;
    - из головка чтения/записи, которая может перемещаться вдоль ленты.

    Программа для машины Тьюринга, задается в виде таблицы, определяющей команды для головки.

    ===

    ьюринга машина,
    название, закрепившееся за абстрактными (воображаемыми) "вычислительными машинами" некоторого точно охарактеризованного типа, дающими пригодное для целей математического рассмотрения уточнение общего интуитивного представления об алгоритме. Концепция такого рода машины сложилась в середине 30-х гг. 20 в. у А. М. Тьюринга в результате произведнного им анализа действий человека, выполняющего в соответствии с заранее разработанным планом те или иные вычисления, то есть последовательные преобразования знаковых комплексов.

    Т. м. удобно представлять в виде некоторого автоматически действующего устройства, способного находиться в конечном числе внутренних состояний и снабженного бесконечной внешней памятью - лентой. Среди состояний имеются два выделенных - начальное и заключительное. Лента разделена на клетки (ячейки) и не ограничена влево и вправо. В каждой клетке ленты может быть записан любой из символов, входящих в некоторый заранее заданный перечень (ради единообразия считают, что в пустой клетке записана "пустая буква"). В каждый момент времени Т. м. находится в одном из своих состояний и, рассматривая (посредством специального устройства) одну из клеток своей ленты, воспринимает записанный в ней символ. Если в текущий момент времени Т. м. находится в не заключительном состоянии, то в следующий за ним момент: 1) она переходит в новое состояние, быть может совпадающее со старым, или заключительное; 2) в рассматриваемой клетке старый символ заменяется новым, быть может пустым или совпадающим со старым; 3) лента машины сдвигается на одну клетку влево или вправо либо остатся на месте. Этот шаг Т. м. вполне определяется е текущим состоянием и текущим воспринимаемым символом. Таблица, содержащая полное перечисление возможных шагов данной Т. м. , называется программой этой машины.

    Текущее полное описание Т. м. датся е конфигурацией, которая состоит из указания для данного момента следующей информации: 1) конкретного заполнения клеток ленты символами, 2) клетки, находящейся в поле зрения машины, 3) состояния, в котором машина находится.

    Если у данной Т. м. взять в качестве исходной какую-либо конфигурацию с не заключительным состоянием, то работа этой машины будет заключаться в последовательном, шаг за шагом, преобразовании исходной конфигурации в соответствии с программой машины до тех пор, пока не будет достигнута конфигурация с заключительным состоянием. Эта последняя, если она существует, и считается результатом работы данной Т. м. над исходной конфигурацией.

    Имеются серьзные основания считать, что понятие Т. м. доставляет адекватное уточнение общего представления об алгоритме, то есть что всякий алгоритм может быть промоделирован подходящей Т. м. Соответствующее соглашение известно в алгоритмов теории под названием тезиса Тьюринга. Теория Т. м. дат удобный рабочий аппарат для многих исследований, требующих точного понятия алгоритма. В частности, ввиду естественности совершаемых ими шагов, Т. м. стали объектом пристального внимания в теории сложности алгоритмических вычислений. В ходе развития теории Т. м. рассматривались различные их обобщения: например, Т. м. с более общим типом лент, с несколькими лентами, а также недетерминированные Т. м.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *